Intracoronary Imaging, Cholesterol Efflux, and Transcriptomes After Intensive Statin Treatment
The YELLOW II Study

Annapoorna S. Kini, MD,a Yuliya Vengrenyuk, PHD,a Khader Shameer, PhD,b Akiko Maehara, MD,c Meerarani Purushothaman, PhD,a Takahiro Yoshimura, MD,d Mitsuaki Matsumura, BS,e Melissa Aquino, MS,a Nezam Haider, PhD,d Kipp W. Johnson, BS,f Ben Readhead, MBBS,g Brian A. Kidd, PhD,g Jonathan E. Feig, MD, PhD,a Prakash Krishnan, MD,a Joseph Sweeny, MD,a Mahajan Milind, PhD,a Pedro Moreno, MD,h Roxana Mehran, MD,a Jason C. Kovacic, MD, PhD,h Usman Baber, MD,h Joel T. Dudley, PhD,b Jagat Narula, MD, PhD,h Samin Sharma, MDa

ABSTRACT

BACKGROUND Despite extensive evidence demonstrating the beneficial effects of statins on clinical outcomes, the mechanisms underlying these effects remain elusive.

OBJECTIVES This study assessed changes in plaque morphology using intravascular imaging, with a comprehensive evaluation of cholesterol efflux capacity (CEC) and peripheral blood mononuclear cell (PBMC) transcriptomics in patients receiving high-dose statin therapy.

METHODS In a prospective study, 85 patients with stable coronary artery disease underwent percutaneous coronary intervention for a culprit lesion, followed by intracoronary multimodality imaging, including optical coherence tomography (OCT) of an obstructive nonculprit lesion. All subjects received 40 mg of rosuvastatin daily for 8 to 12 weeks, when the nonculprit lesion was reimaged and intervention performed. Blood samples were drawn at both times to assess CEC and transcriptomic profile in PBMC.

RESULTS Baseline OCT minimal fibrous cap thickness (FCT) was 100.9 ± 41.7 μm, which increased to 108.6 ± 39.6 μm at follow-up, and baseline CEC was 0.81 ± 0.14, which increased at follow-up to 0.84 ± 0.14 (p = 0.003). Thin-cap fibroatheroma prevalence decreased from 20.0% to 7.1% (p = 0.003). Changes in FCT were independently associated with CEC increase by multivariate analysis (β: 0.30; p = 0.01). PBMC microarray analysis detected 117 genes that were differentially expressed at follow-up compared to baseline, including genes playing key roles in cholesterol synthesis (SQLE), regulation of fatty acids unsaturation (FADS1), cellular cholesterol uptake (LDLR), efflux (ABCA1 and ABCG1), and inflammation (DHCR24). Weighted coexpression network analysis revealed unique clusters of genes associated with favorable FCT and CEC changes.

CONCLUSIONS The study demonstrated an independent association between fibrous cap thickening and improved CEC that may contribute to morphological changes suggesting plaque stabilization among patients taking intensive statin therapy. Furthermore, the significant perturbations in PBMC transcriptome may help determine the beneficial effects of statin on plaque stabilization. (Reduction in Coronary Yellow Plaque, Lipids and Vascular Inflammation by Aggressive Lipid Lowering [YELLOW II]; NCT01837823) (J Am Coll Cardiol 2017;69:628-40) © 2017 by the American College of Cardiology Foundation.
Clinical benefits of lowering lipids by using statins in primary and secondary prevention of cardiovascular disease have been established by several landmark randomized clinical studies (1–4). Subsequent studies provided strong evidence for statins improving clinical outcomes through suppression of inflammation and other lipid-lowering independent properties (5,6). Beyond lipid lowering, the pleiotropic effects of statins also contribute to favorable changes in plaque biology, documented by multiple imaging studies. Statin therapy has demonstrated a substantial reduction in atheroma volume by intravascular ultrasonography (IVUS) (7,8), plaque lipid content by near infrared spectroscopy (NIRS) (9), percentage of necrotic core area by virtual histology (10), and increase in fibrous cap thickness (FCT) assessed by optical coherence tomography (OCT) (11,12). Additionally, more intensive statin therapy leads to more favorable change in plaque morphology (8,9). Despite the extensive evidence for statins’ beneficial effects on plaque size and morphology, the mechanisms underlying these effects in humans remain incompletely understood.

Decreased levels of high-density lipoprotein cholesterol (HDL-C) have been associated with increased cardiovascular risk in numerous epidemiological studies; however, randomized controlled trials with pharmacological intervention raising HDL-C have failed to reduce cardiovascular disease events (13,14). High-density lipoprotein promotes several atheroprotective functions including reverse cholesterol transport, the pathway by which HDL accepts peripheral cholesterol and delivers it to the liver for excretion (15). Macrophage-specific cholesterol efflux to lipid-deficient apolipoprotein A1 (apo A-I) particles binding to the ATP-binding cassette A1 transporter (ABCA1) is considered the most relevant to atherosclerosis (16). Cholesterol efflux capacity (CEC) has demonstrated an inverse relationship with incidence of cardiovascular events in population-based studies (16,17) and has been shown to improve cardiovascular disease risk prediction beyond conventional risk factors (18).

Whether statins can improve HDL function and decrease low-density lipoprotein cholesterol (LDL-C) is controversial. Results of studies investigating the effect of various statins on CEC have been inconsistent (19–21). Furthermore, statins have been shown to induce significant perturbations in gene expression of human peripheral blood mononuclear cells (PBMC) (22,23) and reduce the macrophage content of mouse plaques by promoting macrophage migration from the lesions through stimulation of the C-C chemokine receptor type 7 (CCR7) emigration pathway (24).

Although our recently reported YELLOW (Reduction in Coronary Yellow Plaque, Lipids and Vascular Inflammation by Aggressive Lipid Lowering) trial demonstrated a reduction in lipid content of an obstructive non-culprit lesion (NCL) by NIRS after short-term high-dose statin therapy (9), the YELLOW II study was designed to assess changes in plaque morphology of an obstructive NCL by OCT and NIRS/IVUS with a comprehensive evaluation of HDL functionality, PBMC transcriptomics, and macrophage migration in patients receiving high-dose statin therapy.

METHODS

The protocol of this prospective single-center study was approved by the institutional review board. All patients provided written informed consent. An independent data and safety monitoring board oversaw the conduct, safety, and efficacy of the study. The primary objectives were to examine changes in lipid content of the obstructive NCL, measured by NIRS, and plaque morphology, assessed by OCT; and to compare changes in lipid content and plaque morphology with changes in LDL, HDL, apo A-I, and macrophage functionality. Secondary endpoints included finding correlations between the changes in plaque morphology, CEC, and perturbations in PBMC transcriptome. Figure 1 shows the study design (study protocol is shown in the Online Appendix). Stable patients scheduled for elective coronary angiography and/or coronary artery stenting.

ABBREVIATIONS AND ACRONYMYS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA1</td>
<td>ATP-binding cassette A1 transporter</td>
</tr>
<tr>
<td>CEC</td>
<td>Cholesterol efflux capacity</td>
</tr>
<tr>
<td>FCT</td>
<td>Minimal fibrous cap thickness</td>
</tr>
<tr>
<td>hsCRP</td>
<td>High-sensitivity C-reactive protein</td>
</tr>
<tr>
<td>IVUS</td>
<td>Intravascular ultrasonography</td>
</tr>
<tr>
<td>NCL</td>
<td>Nonculprit lesion</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near infrared spectroscopy</td>
</tr>
<tr>
<td>OCT</td>
<td>Optical coherence tomography</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cells</td>
</tr>
</tbody>
</table>

AstraZeneca. Drs. Shameer, Johnson, Kidd, Readhead, and Dudley are supported by grants from National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (R01DK098242); National Cancer Institute (U54CA189201); Illuminating the Druggable Genome; Knowledge Management Center sponsored by NIH Common Fund; NCI (U54-CA189201-02) and a National Center for Advancing Translational Sciences and Clinical and Translational Science Award (UL1TR000057). Dr. Dudley is a consultant for or has received honoraria from Janssen Pharmaceuticals, GlaxoSmithKline, AstraZeneca, and Hoffman-La Roche; is a scientific advisor to LAM Therapeutics; and holds equity in NuMedii Inc., Ayasdi Inc., and Ontomics, Inc. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Adnan Chaitriwalla, MD, served as Guest Editor for this paper.

Manuscript received October 18, 2016; revised manuscript received October 24, 2016, accepted October 24, 2016.
were screened for this study. The final target population consisted of patients with multivessel disease requiring staged intervention (culprit vessel initially, nonculprit vessel later) with maximal lipid core burden index in a 4-mm length of artery (maxLCBI <150) by NIRS imaging of the NCLs. From August 2013 to February 2015, we enrolled 91 patients who had multivessel coronary artery disease, who underwent percutaneous coronary intervention for a culprit lesion, followed by OCT and NIRS/IVUS imaging of an obstructive NCL. Following enrollment, all subjects received rosuvastatin, 40 mg daily. Eight to 12 weeks after enrollment, the NCL was reimaged as a part of staged intervention. All procedures were performed at Mount Sinai catheterization laboratory (New York, New York). Serial changes of serum lipids, high-sensitivity C-reactive protein (hsCRP), and apolipoproteins were assessed at baseline and at follow-up procedures. Additionally, fasting blood samples were obtained during baseline and at follow-up for CEC quantification and PBMC isolation. Off-line gray-scale IVUS, NIRS, and OCT analyses were performed at the Cardiovascular Research Foundation (New York, New York), which had no knowledge of the patients’ clinical presentation. The observed changes in plaque morphology by intravascular imaging were related to the changes in CEC and messenger ribonucleic acid (mRNA) expression of PBMC. Statistical analyses were performed by the data coordinating center at Cardiovascular Institute of Mount Sinai Hospital, also blinded to clinical data.

IMAGE ACQUISITION. OCT image acquisition was performed using the C7-XR OCT model (Intravascular Imaging System; St. Jude Medical, Minneapolis, Minnesota), with continuous intracoronary contrast injection. A TVC (True Vessel Characterization) imaging system with the TVC Insight catheter (Infraredx, Burlington, Massachusetts) was used to perform combined IVUS and NIRS image acquisition for the same lesion (Online Appendix).

Offline gray-scale IVUS and NIRS analyses were performed according to criteria of the American College of Cardiology consensus statement on IVUS (25) as previously described (9) (Online Appendix).

OCT images were analyzed systematically at 1-mm intervals according to previously validated criteria for plaque characterization, using the St. Jude Medical offline review workstation (Online Appendix) (26). Thin-cap fibroatheroma (TCFA) was defined as lipid-rich plaque with minimal FCT <65 μm.

TRANSLATIONAL STUDIES. Cholesterol efflux capacity was quantified by measuring the efflux of

FIGURE 1 The YELLOW II Study Flowchart

Two/Three Vessel CAD

After culprit vessel PCI, non-target lesion undergoes NIRS/IVUS and OCT

Baseline ex vivo studies

Non-culprit lesion

4 mm LCBI ≥150

High-dose Statin: Rosuvastatin 40 mg/(N = 91)

8-12 weeks of therapy

Repeat angiogram, NIRS/IVUS and OCT of non-culprit (study) lesion

PCI of non-culprit (study) lesion (N = 85)

Final ex vivo studies

Clinical Follow-up at 1, 6, 12 months

Non-culprit lesion

4 mm LCBI <150 Excluded

Non-culprit lesion

4 mm LCBI ≥150

The diagram describes patient enrollment, intravascular imaging, and treatment in the YELLOW II (Reduction in Coronary Yellow Plaque, Lipids and Vascular Inflammation by Aggressive Lipid Lowering) study. CAD = coronary artery disease; IVUS = intravascular ultrasonography; LCBI = lipid core burden index; NIRS = near-infrared spectroscopy; OCT = optical coherence tomography; PCI = percutaneous coronary intervention.
radiolabeled cholesterol from mouse cell line J774 macrophages to patient apo B-depleted serum as previously described (Online Appendix) (17,19). To correct for interassay variation across plates, control serum pooled from 18 healthy volunteers was included on each plate; CEC values for patient sera samples were normalized to the pooled value. The interassay coefficient of variation was 2.7%. Additional details regarding migration assay, gene expression profiling, and differential expression profiling are given in the Online Appendix.

STATISTICAL ANALYSIS. Sample size was calculated as described in the study protocol in the Online Appendix. All continuous measurements were expressed as mean ± SD for normally distributed variables or median and interquartile ranges for nonparametric data. The Shapiro-Wilk test was used to assess the normality of continuous data. Differences between baseline and follow-up measurements were assessed using the Wilcoxon signed rank test. The changes in biochemical parameters and CEC after therapy were calculated by subtracting the baseline values from those at follow-up. Linear regression was used to estimate the correlates of the change in minimal FCT. Sensitivity analysis was performed to assess the effect of statin exposure at baseline, using statis-

tical interaction testing by including an interaction term in the models. All reported p values are 2-tailed with a value of <0.05 indicating statistical significance. Analyses were performed using SAS version 9.4 software (SAS Institute, Cary, North Carolina). Probability values of gene ontology terms, functional classes, and pathway enrichment using differential expression profile and weighted gene co-expression network analysis (WGCNA) modules were reported after multiple testing correction.

RESULTS

From August 2013 until February 2015, 962 consecutive patients with chronic stable angina presenting for elective coronary angiography were screened and gave consent. After we applied clinical (n = 31), angiographic (n = 834), and NIRS (n = 6) exclusion criteria, 91 patients were enrolled in the study (Online Figure 1). Six patients were lost to follow-up. A total of 85 plaques from 85 patients were evaluated using NIRS/IVUS and OCT at baseline and follow-up. In these 85 patients, 3 OCT pullback images (1 baseline, 2 follow-up) needed to be excluded from the analysis due to poor image quality. Baseline demographic characteristics, concomitant medications, and treated vessel information for the study patients are shown in Online Table 1. Sixty-nine (81%) of the 85 patients were already receiving statin therapy; 16 patients (19%) were statin-naïve. After patients received intensive statin therapy, there were significant reductions from baseline in total cholesterol, LDL-C, and triglyceride levels but no significant change in HDL-C (Table 1). Additionally, while apo A-I levels significantly increased, apo B and hsCRP levels decreased significantly after treatment. During 1-year follow-up, there was no cardiac-related death in the study population (Online Table 2). Most frequent events were hospitalization for chest pain (17.6%) and urgent revascularization (15.3%); 3 patients had nonfatal myocardial infarctions.

TABLE 1 Chemical Parameters, CEC, and Intravascular Imaging

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline (n = 85)</th>
<th>Follow-Up (n = 85)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol, mg/dl</td>
<td>153.3 ± 44.9</td>
<td>115.0 ± 29.9</td>
<td><0.001</td>
</tr>
<tr>
<td>LDL cholesterol, mg/dl</td>
<td>86.8 ± 39.6</td>
<td>50.6 ± 25.0</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol, mg/dl</td>
<td>41.2 ± 12.7</td>
<td>42.2 ± 13.1</td>
<td>0.41</td>
</tr>
<tr>
<td>Triglyceride, mg/dl</td>
<td>128.6 ± 111.8</td>
<td>107.8 ± 66.7</td>
<td>0.04</td>
</tr>
<tr>
<td>apo B, mg/dl</td>
<td>79.6 ± 28.0</td>
<td>57.4 ± 17.5</td>
<td><0.001</td>
</tr>
<tr>
<td>apo A-I, mg/dl</td>
<td>120.1 ± 25.6</td>
<td>126.9 ± 23.3</td>
<td>0.004</td>
</tr>
<tr>
<td>hsCRP, mg/l</td>
<td>3.5 ± 5.5</td>
<td>2.7 ± 4.2</td>
<td><0.001</td>
</tr>
<tr>
<td>CEC</td>
<td>0.81 ± 0.14</td>
<td>0.84 ± 0.14</td>
<td>0.003</td>
</tr>
<tr>
<td>OCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference lumen CSA, mm²</td>
<td>6.8 ± 2.2</td>
<td>6.6 ± 2.1</td>
<td>0.07</td>
</tr>
<tr>
<td>Minimum lumen CSA, mm²</td>
<td>1.80 ± 0.69</td>
<td>1.84 ± 0.68</td>
<td>0.26</td>
</tr>
<tr>
<td>Area stenosis, %</td>
<td>71.9 ± 8.5</td>
<td>70.1 ± 9.0</td>
<td>0.24</td>
</tr>
<tr>
<td>Lipid rich plaque</td>
<td>75 (88.2)</td>
<td>72 (84.7)</td>
<td>0.50</td>
</tr>
<tr>
<td>Lipid arc maximum, †</td>
<td>147.2 ± 80.1</td>
<td>139.2 ± 79.4</td>
<td>0.20</td>
</tr>
<tr>
<td>Lipid length, mm</td>
<td>5.8 ± 5.2</td>
<td>4.9 ± 4.0</td>
<td>0.03</td>
</tr>
<tr>
<td>Lipid volume index, † × mm³</td>
<td>663.7 ± 668.6</td>
<td>586.8 ± 616.5</td>
<td>0.16</td>
</tr>
<tr>
<td>Minimum cap thickness, μm</td>
<td>100.9 ± 41.7</td>
<td>108.6 ± 39.6</td>
<td><0.001</td>
</tr>
<tr>
<td>TCFA†</td>
<td>17 (20.0)</td>
<td>6 (7.1)</td>
<td>0.003</td>
</tr>
<tr>
<td>Macrophages</td>
<td>83 (97.6)</td>
<td>80 (94.1)</td>
<td>0.50</td>
</tr>
<tr>
<td>Macrophage arc maximum, †</td>
<td>136.2 ± 66.6</td>
<td>129.1 ± 60.5</td>
<td>0.11</td>
</tr>
<tr>
<td>Macrophage length, mm</td>
<td>9.8 ± 5.4</td>
<td>8.8 ± 5.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Thrombus</td>
<td>15 (17.6)</td>
<td>12 (14.1)</td>
<td>0.51</td>
</tr>
<tr>
<td>Microvessel</td>
<td>64 (75.3)</td>
<td>66 (77.6)</td>
<td>0.63</td>
</tr>
<tr>
<td>Calcium deposition</td>
<td>75 (88.2)</td>
<td>74 (87.1)</td>
<td>0.71</td>
</tr>
<tr>
<td>Calcium arc maximum, †</td>
<td>124.4 ± 85.6</td>
<td>127.6 ± 86.2</td>
<td>0.05</td>
</tr>
<tr>
<td>IVUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEM volume, mm²</td>
<td>298.2 ± 147.3</td>
<td>297.4 ± 148.8</td>
<td>0.73</td>
</tr>
<tr>
<td>TAV, mm²</td>
<td>182.3 ± 94.5</td>
<td>182.7 ± 95.5</td>
<td>0.82</td>
</tr>
<tr>
<td>Plaque, %</td>
<td>60.71 ± 7.52</td>
<td>60.97 ± 7.57</td>
<td>0.30</td>
</tr>
<tr>
<td>Plaque burden, %</td>
<td>75.93 ± 7.07</td>
<td>75.79 ± 7.96</td>
<td>0.76</td>
</tr>
<tr>
<td>Plaque plus media, mm²</td>
<td>7.67 ± 3.32</td>
<td>7.75 ± 3.44</td>
<td>0.52</td>
</tr>
<tr>
<td>NIRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxLCBI₄mm</td>
<td>416.6 ± 172.9</td>
<td>400.2 ± 180.4</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Values are mean ± SD or n (%). †Averaged lipid arc × lipid length. ‡Lipid-rich plaque with the minimal fibrous cap thickness <65 μm.

apo = apolipoprotein; CEC = cholesterol efflux capacity; CSA = cross-sectional area; EEM = external elastic membrane; HDL = high-density lipoprotein; hCRP = high-sensitivity C-reactive protein; IVUS = intravascular ultrasonography; LDL = low-density lipoprotein; maxLCBI₄mm = maximal lipid core burden index in a 4-mm segment; NIRS = near-infrared spectroscopy; OCT = optical coherence tomography; PAV = percentage of atheroma volume; TAV = total atheroma volume; TCFA = thin-cap fibroatheroma.
IMAGING RESULTS. Baseline and follow-up multimodal imaging findings are summarized in Table 1 and Online Tables 3 to 6. Baseline OCT-verified minimal FCT was 100.9 ± 41.7 μm, which was increased at follow-up to 108.6 ± 39.6 μm (p < 0.001), with the average change of 9.1 ± 17.1 μm. TCFA prevalence decreased from 20.0% to 7.1% (p = 0.003) (Figures 2A to 2D). Online Table 7 describes...
demographics and risk factors for 3 groups of patients, who demonstrated an increase (n = 39), a decrease (n = 13), or no change (n = 18) in FCT at follow-up. Additionally, there was a significant decrease in lipid length with a trend toward a reduction in maximal lipid arc; similarly, OCT-derived macrophage length significantly reduced after statin therapy with a trend toward a decrease in maximal macrophage arc (Table 1). Upon follow-up, IVUS-based total atheroma volume, percentage of atheroma volume, and NIRS maxLCBI4mm did not reveal significant changes (Table 1).

TRANSLATIONAL RESULTS. After high-dose statin therapy, CEC of apo B-depleted sera from study participants normalized to a pool of healthy controls
increased significantly (Table 1) with an average change of 0.04 ± 0.08. Cholesterol efflux capacity increased in 50 and decreased in 32 patients compared to the baseline, whereas 3 patients did not demonstrate a change in CEC (Online Table 8 describes demographics and risk factors according to changes in CEC at follow-up). The change in FCT was greater in patients who had increased CEC at follow-up compared to those who demonstrated a decrease or no change in CEC at follow-up (13.3 ± 15.3 μm vs. 5.1 ± 18.6 μm, respectively; p = 0.043).

We also assessed whether beneficial changes in plaque morphology by intravascular imaging after statin therapy were associated with the changes in macrophage functionality (27,28). Macrophage chemotaxis toward CCL19 and CCL21 was measured using mouse cell line J774 pretreated with apo B-depleted serum of study participants. There were no differences between the number of migrated cells at baseline and the number after 8 to 12 weeks of high-dose statin therapy with the mean change in the normalized number of migrated cells 0.19 ± 1.2, as shown in Online Figure 2.

In addition to translational cell biology experiments, transcriptomic profile of PBMC was analyzed at baseline and at follow-up to identify differentially expressed signature (Figures 3A and 3B, Online Appendix). A total of 29,377 probes mapping to 9,978 genes tested in the differential expression, where yellow = upregulated genes; blue = downregulated genes. We performed quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of peripheral blood mononuclear cells gene expression at baseline and follow-up for a subgroup of 24 study patients. Consistent with microarray data, the messenger ribonucleic acid abundance levels of SQLE, DHCR24, FADS1, and LDLR increased significantly and those of ABCA1 and ABCG1 decreased significantly after statin therapy compared to levels at baseline. Data are mean ± SE of mean of duplicates of RT-PCR reactions. *p < 0.05. BL = baseline; FU = follow-up.
Following biocuration and pathway enrichment analyses, a panel of 6 genes with the lowest p values was used for reverse-transcription polymerase chain reaction (RT-PCR) assay. These genes play key biological roles related to cholesterol synthesis (SQLE), regulation of fatty acids unsaturation (FADS1), cellular cholesterol uptake (LDLR), efflux (ABCA1, ABCG1), and lowering of inflammatory processes (DHCR24) and are thus involved in cross-talk between statin metabolism and cholesterol synthesis pathways (29). The observed perturbations were confirmed by RT-PCR (Figure 3C). The gene expression profile and confirmatory assays provide a molecular portrait of factors driving phenotypic changes including efflux and increase in FCT.

By using univariate regression analysis, we correlated the changes in minimal FCT with the changes in CEC (R = 0.332; p = 0.005) (Figure 4A) and hsCRP (R = −0.324; p = 0.007) but not with changes in serum LDL-C (R = 0.033; p = 0.79), HDL-C (R = 0.096; p = 0.43), and triglyceride (R = −0.034; p = 0.78) levels. The associations of FCT with CEC and with hsCRP remained significant after adjusting for age, sex, and changes in lipid levels (Figure 4B). Minimal cap thickness at baseline was another independent predictor of FCT change after high-dose statin therapy. Baseline statin therapy was not an independent covariate of the change in FCT (Online Figure 3B). The correlation between change in FCT and CEC was higher in statin-naïve patients than in patients exposed to statins at baseline (R = 0.739; p = 0.001 vs. 0.200, respectively; p = 0.15) (Online Figure 3A).

Statin therapy at baseline had a significant dampening effect (β = −0.53; 95% confidence interval [CI]: −1.1 to −0.09; p = 0.02) on the association between the changes in FCT and CEC (Online Figure 3B).

The change in macrophage migration did not correlate with the change in FCT (R = −0.11; p = 0.38); however, there was a significant interaction between migration and baseline exposure to statin (β = −0.68; 95% CI: −1.2 to −0.11; p = 0.02) (Online Figure 3D) with a slightly stronger correlation detected in statin-naïve patients (Online Figure 3C).

Comparative analyses of the phenotypes and gene-expression data using WGCNA revealed 12 significant modules (Figures 2E and 2F, Online Figure 4, Online Appendix). The increase in CEC was associated with the midnight blue module of 65 genes (Figure 2F). Genes in this module were enriched for inflammatory response pathways (IL23A, CD28, LTA, CCR7, and PRKCA), cellular adhesion (DPD4, PDE3B, LEF1, ITGA6, CCR7, PRKCA, and EPHA1), regulation of lipid metabolic processes (CRTC3, EPHX2, PDE3B, CCR7, and NFKB1), Fc epsilon receptor (FCER1) signaling (TRAT1, CD28, FOXO1, and NFKB1), and cytokine receptor interactions (EDAR, IL11RA, IL23A, LTA, CD27, FLT3LG, CCR, and LTB). Genes in the correlated module of CEC including chemokine receptors are hallmarks of immune-inflammatory response to the presence of cholesterol and its efflux (30–32). Biological significance and functional roles of differentially expressed genes and the modules associated with CEC and FCT are provided in the Online Appendix (including Online Figures 5 to 13 and biological interpretation of differentially expressed genes).
Changes in FCT were associated with 2 modules, gray60 (n = 40 genes) and light green (n = 37 genes). Collectively these gene sets were associated with interferon signaling and inflammatory processes (ORM1, HP, CHI3L1, OLR1, AZU1, and ELANE). Genes in gray60 modules were localized to the cellular regions of matrix assembly (COL17A1, CTSG, MMP8, MMP9, and ELANE), extracellular matrix organization (GO:0030198, COL17A1, CTSG, MMP8, MMP9, and ELANE), and extracellular matrix (GO:0031012, SLPI, CRISP3, TFF3, CHI3L1, PRTN3, CTSG, DEFA1, MMP8, and MMP9), suggesting a role for matrix remodeling and change in FCT. Although the roles of matrix metalloproteinases and collagens in plaque stability are known, the prospective roles of additional classes of genes including CTS and ELANE are evolving and need further study (33-35).

DISCUSSION

The time interval for aggressive statin treatment in the present study was only 8 to 12 weeks, and morphological changes in atherosclerotic plaques were evaluated and compared with CEC, macrophage functionality, and gene expression changes in PBMC. Although we did not observe a significant change in plaque lipid content quantified using NIRS, we did detect a significant increase in FCT of obstructive NCLs and enhancement of CEC in patients with stable coronary artery disease (Central Illustration). Moreover, our results demonstrated a strong and independent association between fibrous cap thickening and improved CEC. In concert, these findings suggested that macrophage cholesterol efflux may contribute to short-term plaque stabilization soon after initiation of intensive statin therapy, a process that appears to be independent of any changes in plaque lipid content or serum cholesterol. Remarkably, after a short duration of statin therapy, the prevalence of TCFA was reduced from 20.0% to 7.1% (p = 0.003).

The central role of ABCA1-mediated macrophage cholesterol efflux to antiatherogenic properties of HDL-C has been demonstrated by multiple clinical and preclinical studies. Patients with ABCA1 loss-of-function mutations have lower CEC and greater intima-media thickness than controls (36). Our results demonstrated a relationship between CEC and plaque stabilization (Figure 4) and an association between HDL-C function and plaque stabilization in patients that has not been shown previously. The experimental evidence, however, is strong, and mice deficient in ABCA1/ABCG1 efflux transporters have not only accelerated atherosclerosis but also increased secretion of inflammatory cytokines, apoptosis, and increased expression of inflammatory genes (37).

Statin effects on CEC is extremely controversial. Rosuvastatin has been associated with reductions in total CEC and ABCA1-mediated efflux in 2 studies (21,38). Atorvastatin had no significant effect on CEC in 1 study (21), whereas a smaller study showed a significant reduction in ABCA1-mediated CEC (20). Simvastatin produced a significant increase in non-ABCA1-mediated CEC and a trend toward increase in ABCA1-mediated CEC (39), whereas a more recent, larger study suggested the opposite effect (21). The effects of pitavastatin are limited to a single study showing an increase in PEGHDL-specific efflux by using a unique modified CEC assay (40). Therefore, statin therapy in previous studies had either minimal impact or was associated with decreased CEC. Due to the absence of a control arm, we found it impossible to assess the effect of rosuvastatin on CEC.

In the present study, we also explored the relationship between changes in PBMC transcriptome and changes in plaque morphology and CEC in patients undergoing intensive statin treatment (Figure 3). Of 117 differentially expressed genes, 6 genes (SQLE, DHCR24, FADS1, LDLR, ABCA1, and ABCG1) were most strongly associated with favorable outcomes in terms of FCT and CEC and were validated using RT-PCR. These differentially expressed genes play critical biological functions related to cholesterol metabolism, signal transduction pathways, inflammation, and statin metabolism (Figure 3). Among the differentially expressed genes, SQLE catalyzes the first oxygenation step in sterol biosynthesis; this step is categorized as one of the crucial rate-limiting enzymes in this pathway (41). It could be hypothesized that SQLE upregulation indicates maximum effective statin dose through maximum suppression of HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase). It is possible that maximization of statin in a given patient determines the efficacy of treatment for plaque stabilization. The DHCR24 gene encoding a terminal enzyme in cholesterol synthesis (42) also mediates the inhibition of vascular inflammation by lipid-free apo A-I (43). Significant upregulation of DHCR24 expression and reduction of hsCRP levels in our study supported a potential anti-inflammatory role for DHCR24. While upregulation of LDLR is expected and understandable, the downregulation of ABCA1 and ABCG1 expression is intriguing in the setting of significantly enhanced CEC. It is, however, consonant with all previous reports that have demonstrated association of statin treatment with an increase in cholesterol uptake and suppression of apo A-related
ABCA1 cassette protein expression of CEC through sterol regulatory element-binding protein 2 (SREBP2); the transcription factor SREBP2 is activated by low cellular cholesterol (44). Similar to SQLE, the expression levels of ABCA1 and ABCG1 may provide a quantitative measurement for efficacy of patient-specific effects of statin on plaque morphology. Although several genocopies of LDLR are associated with inter-individual variation in cardiac risk and cholesterol metabolism, the precise roles of SQLE and DHCR24 remain unknown, and specifically designed resequencing or association studies with these genes would reveal their pharmacogenomic contributions in the statin response pathways. As shown by several
studies, we believe the PBMC gene expression will be very similar to that of atherosclerotic plaque (45,46).

A mature technology, global gene expression profiling provides a snapshot of gene expression from a given set of sample/tissues in the setting of a disease, drug perturbations, or other biological conditions. Meta-analyses of 238 diseases and 122 tissues from 8,435 microarrays have shown the robustness of gene expression signatures across tissues and experiments in numerous settings, including several cardiovascular diseases (47). We expect minor degrees of difference might be present but cannot be ascertained without blood-versus-tissue comparison. However, the core set of genes and the direction remain robust, and the gene expression signature is now regarded as a major analytical method in personalized medicine (48,49).

High macrophage content is an important feature of vulnerable plaques; reducing macrophage accumulation contributes to the positive influence of lipid lowering. The mechanisms involved in macrophage clearance are a subject of active debate. Statins contributed to a significant reduction in mouse plaque macrophages through stimulation of the CCR7 emigration pathway (24). The present study revealed significant reduction of OCT-detected macrophage accumulation in lesions but did not demonstrate a change in the migration of J774 mouse macrophages pretreated with patient serum toward CCR7 ligands CCL19 and CCL21. A possible explanation for the negative finding was that our in vitro model was not able to reflect all the complexities of plaque macrophage in the in vivo environment. Conversely, the results might suggest that different mechanisms are responsible for the reduction of plaque macrophage content, including reduction in monocyte recruitment and local apoptosis (50), improved endothelial barrier function for LDL entry (51), and reversed phenotypic changes of macrophage-appearing cholesterol-loaded vascular smooth muscle cells (52).

STUDY LIMITATIONS. The lack of a randomized design precluded causal inferences between the use of high-intensity statins and the changes observed in various morphologic, functional, and genetic parameters. Duration of follow-up was also short and not likely to demonstrate the striking changes in plaque morphology. A prospectively designed randomized study in the next phase should compare the continuation of statin therapy with dose maximization on these important morphological and mechanistic endpoints. Unlike our previous YELLOW (Reduction in Coronary Yellow Plaque, Lipids and Vascular Inflammation by Aggressive Lipid Lowering) study, the present experiment did not demonstrate significant reductions in NIRS-based lipid core burden index, a null result possibly attributable to a NIRS-based inclusion criterion in the YELLOW II protocol and the lack of a comparative standard dose arm. Although we have separately listed all individual correlations of morphological changes with biochemical, cell biological, and genomic perturbations in our study protocol, we have highlighted the positive correlation more extensively in the discussion section especially pertaining to CEC and transcriptomic results. The role of several time-varying covariates that could be potential confounders, including changes in smoking, alcohol intake, physical activity, and diet, were not considered in the study.

CONCLUSIONS

We observed favorable modulation in different markers of coronary atherosclerotic plaque vulnerability among patients treated with high-intensity statins for a short duration. In part, these changes may be attributable to enhanced CEC, an independent correlate of increased FCT in our study. We also demonstrated that significant transcriptomic perturbations related to cholesterol synthesis, regulation of fatty acid unsaturation, cellular cholesterol uptake, efflux, and inflammation may cooperate in determining statin’s beneficial effects on plaque stabilization.

ADDRESS FOR CORRESPONDENCE: Dr. Annapoorna S. Kini, Department of Interventional Cardiology, Mount Sinai Hospital, One Gustave L. Levy Place, Box 1030, New York, New York 10029. E-mail: annapoorna.kini@mountsinai.org.

PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: FCT of obstructive NCLs assessed by OCT and CEC increased in patients with stable coronary disease treated with high-dose rosuvastatin.

TRANSLATIONAL OUTLOOK: Additional research is needed to understand how macrophage cholesterol efflux improves plaque stabilization soon after initiation of intensive statin therapy, which appears independent of changes in plaque lipid content or serum cholesterol levels.
REFERENCES

KEY WORDS fibrous cap thickness, high-dose statin, optical coherence tomography, plaque stability, thin-cap fibroatheroma

APPENDIX For an expanded Methods section as well as figures and tables, please see the online version of this article.