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Abstract 
Motivation: Recent advances in mass cytometry allow simultaneous measurements of up to 50 markers at 

single-cell resolution. However, the high dimensionality of mass cytometry data introduces computational chal-

lenges for automated data analysis and hinders translation of new biological understanding into clinical applica-

tions. Previous studies have applied machine learning to facilitate processing of mass cytometry data. Howev-

er, manual inspection is still inevitable and becoming the barrier to reliable large-scale analysis. 

Results: We present a new algorithm called Automated Cell-type Discovery and Classification (ACDC) that 

fully automates the classification of canonical cell populations and highlights novel cell types in mass cytometry 

data. Evaluations on real-world data show ACDC provides accurate and reliable estimations compared to man-

ual gating results. Additionally, ACDC automatically classifies previously ambiguous cell types to facilitate dis-

covery. Our findings suggest that ACDC substantially improves both reliability and interpretability of results ob-

tained from high-dimensional mass cytometry profiling data. 

Availability: A Python package (Python 3) and analysis scripts for reproducing the results are availability on 

https://bitbucket.org/dudleylab/acdc. 

Contact: correspondence to brian.kidd@mssm.edu and joel.dudley@mssm.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction  

High-throughput, high-dimensional cytometry is one of the most valua-

ble tools for basic and clinical immunology. Advances in this technology 
over the last decade now provide simultaneous measurements of dozens 

of proteins at single-cell resolution (Spitzer and Nolan, 2016; Bandura et 

al., 2009). Mass cytometry by time-of-flight (CyTOF) provides a power-
ful new tool for studying cellular diversity and dynamics by measuring 

up to 50 markers per cell. Many recent studies highlight the utility of 

CyTOF for enabling novel discovery and understanding in multiple 
domains of immunology, including mapping cell subset heterogeneity 

and specificity in response to various pathogens (Newell et al., 2012, 

2013), precise elucidation of cellular networks and biochemical pathway 
activation following drug perturbation (Bendall et al., 2011; Bodenmiller 

et al., 2012), as well as new understanding of cellular trafficking and 

tissue localization (Michael T. Wong et al., 2016; Michael Thomas 
Wong et al., 2016). However, the high number of measures and com-
plexity of the resulting data restrict manual exploration and present chal-

lenges for both the analysis and biological interpretation of CyTOF data 
(Newell and Cheng, 2016). New tools that automate the data analysis are 

needed to realize the full potential of CyTOF for biological discovery 

and translational applications. 
 

A number of studies have focused on applying or developing algorithms 

to address the data analysis and interpretation challenges arising from 
CyTOF data. One early approach applied machine learning techniques to 

detect clusters of similar immune cell types in high dimensional space 

(Aghaeepour et al., 2013; Qiu et al., 2011). More recently, researchers 
have used network analysis techniques to assist the identification of 

known and novel cell populations (Shekhar et al., 2014; Levine et al., 

2015; Samusik et al., 2016). In concert with these analytical advances, a 
number of studies have developed software tools to organize and visual-

ize the high-dimensional cytometry data (Van der Maaten and Hinton, 

2008; Amir et al., 2013; Shekhar et al., 2014). Yet, to date, the available 
computational tools still require substantial manual manipulation to 

extract biological findings and interpret the data. These manual steps 

create a major limitation for exploring the full data set and taking ad-
vantage of the large number of markers in CyTOF. 

 

One of the biggest challenges for interpreting mass cytometry data is 
how best to annotate individual cells with canonical cell types. This 
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difficulty arises from (i) uncertainty in defining cell types based on more 

than a handful of markers and (ii) the absence of biological information 
as an input for machine learning techniques. Current approaches require 

substantial manual inspection that impedes the analysis workflow, un-

derutilizes the full value of the high-dimensional data, and ultimately 
reduces the scientific insights that can be gained from each study. Here 

we address the cell annotation challenge through a novel computational 

method that greatly facilitates the organization and interpretation of mass 
cytometry data through automated transfer of biological knowledge.  

 

Our method automates cell annotation by using biological knowledge as 
an input parameter to a novel machine learning approach: Automated 

Cell-type Discovery and Classification (ACDC). ACDC provides en-
hanced visualization and automated classification of canonical cell popu-

lations, as well as augments the discovery of novel populations from 

mass cytometry data. ACDC represents a new framework that seamlessly 
integrates all the pieces to automate the process for estimating occur-

rences of canonical cell populations. We evaluated ACDC using three 

benchmark data sets (AML (Levine et al., 2015), BMMC (Bendall et al., 
2011; Levine et al., 2015) and PANORAMA (Samusik et al., 2016), for 

which manual gating information was available to provide a “ground 

truth” reference.  

 

2 Methods 

 
Annotating individual cells requires reconciling the vast amounts of 

single cell information collected through high-throughput cytometry with 

our prior knowledge. To illustrate this point, it is well established that a 
CD4+ T-cell is identified based on high levels of CD3 and CD4 and 

simultaneously having low expression level of CD8. We designed 

ACDC to take advantage of the biological knowledge that humans have 
accumulated and integrate this information with machine learning algo-

rithms to automate the annotation of mass cytometry data.  

 
To combine our prior biological frameworks with new data, the ACDC 

approach involves two steps (Figure 1A and Supplementary Figure 1). 

First, ACDC converts a user-specified table of markers and cell labels 
into landmark points that represent fingerprints for specific cell types in 

the high-dimensional space. Second, ACDC implements semi-supervised 

classification via random walks (Grady, 2006) to collect information 
from all the landmark points and classify events at the single-cell resolu-

tion. With ACDC, prior knowledge of canonical cell types is explicitly 
encoded in the user-specified table, transformed into landmark points 

and eventually fed into a semi-supervised learning algorithm. We sum-

marize the workflow of ACDC in the following:  
1. Inputs: measured mass cytometry events and a user-specified 

table of markers to cell types.  

2. Generate landmark points by score matching and un-
supervised clustering. (section 2.1)  

3. Classify single-cell events by semi-supervised learning. (sec-

tion 2.2) 

Study design and evaluations are presented in section 2.3. 

 

2.1 Generate landmark points  

2.1.1 Design of cell type-marker table 
A cell type-marker table is a data matrix �(�� ,��) whose value is either 
1 (present, +), -1 (absent, -) or 0 (do not consider), where �� is the j-th 
cell type and  �� is the k-th marker (Supplementary table 1, 2 and 3). 
The cell type-marker table allows users to customize cell types to be 

detected by linking these canonical cell types to their marker profiles. 
For example, CD4+ T-cells are known to have high expression level of 

the surface markers CD3 and CD4 and low expression level of CD8. 

Therefore, CD4+ T-cells are described as CD3+/CD4+/CD8- cells. As 
another example, B-cells can be referred to as CD19+/CD3- cells. 

ACDC converts the user specified cell type-marker table into landmark 

points in the high-dimensional space.  

 

2.1.2 Design of the score function  
We designed the score function to match a mass cytometry event with a 

single cell type. Intuitively, the chance a measured event belongs to a 

canonical cell type is determined by the extent that the intensity profile 
of a cluster matches one of the pre-specified profiles. We formulated the 

degree of matching as the posterior probability that a marker is in the 

activated/inactivated state. To be precise, we first fit a two-mode Gaussi-

an mixture model 	�	to the k-th marker’s intensity distribution. While the 
marker intensity is one dimensional, we identified the mode of high/low 
intensity as the activated/ inactivated state of this marker. The score of 

assigning an event �� 	to a cell type �� is then defined by 
(��, ��) = 		����	��	����,			�����	������ ,�������� 

where 	������ ,������� is the posterior probability of the k-th marker is 
in state ���� ,���	 and ��� is the intensity of the k-th marker in an event 
��. The minimum is taken over all specified markers to ensure that all 
requirements are satisfied. In practice, cell types specified by a user 

might not be exhaustive. To detect those unspecified cells, we added an 
“unknown” type whose score is defined by 

(��, unknown) = 		1 −�#$�� (����	��	����,			�����	������ ,��������). 
This quantity represents the level of uncertainty in our current 
knowledge since its high value indicates the low probability of assigning 

any specified cell types to the event ��.  
 

Though 	�  can be directly evaluated by the Gaussian mixture model, 
such posterior probability might not be monotonic if the Gaussian mix-

ture model has modes of unequal variances. We instead used an approx-
imated function  

	&�(� = 1|�) =
	($)	((� − #) × +)

1 + 	($)	((� − #) × +) 

where # is the critical point that 	�(� = 1|��) = 		�(� = 0|��) and + is 
the slope of the posterior probability at this critical point. Both # and + 
can be computed from the means and variances of the two-mode Gaussi-
an mixture model.  

 

2.1.3 Unsupervised clustering 
Community detection (Girvan and Newman, 2002) was used due to its 

superior performance in clustering mass cytometry data (Levine et al., 

2015). The community detection aims to find a set of assignments �� 	that 
maximize the modularity Q defined by 

. = 1
2�012�� −

����
2�3��

4(�� , ��) 
where 2�� is the weights between i-th node and j-th node, �� = ∑ 2���  

and � = ∑ 2���� 2⁄ .  4(7, 8) is the Krnoecker delta function that takes 
values of 1 when 7 = 	8 and 0 otherwise. ��  is the community assign-
ment of i-th node. We used the recommended setting to generate the 

weight matrix 2�� based on 30-nearest neighbor graph and Jaccard simi-
larity (Levine et al., 2015). 

 

2.1.4 Landmark point generation 
To generate landmark points, we partitioned the whole dataset into sub-

sets 9� = {��	|		���, ��� > 1/2}. Landmark points were defined as the 
centers of clusters identified by community detection in each subset. 

 

2.2 Single-cell classification by semi-supervised learning 

2.2.1 Classification by random walkers 
We implemented semi-supervised classification via random walks 

(Grady, 2006) for classifying events at the single-cell resolution. Briefly, 
semi-supervised classification via random walks evaluates the probabil-

ity that a data point $ belongs to class � as the chance of a random walk-
er, starting from the data point $, first reaches a landmark point > of class 
� when navigating the network. Theoretical derivation shows this proba-
bility satisfies the Laplace equation, i.e.,  

∇	($|�) = 0, 
with the boundary conditions 	(>|�) = 1 if a landmark point > of class � 
and 	(>|�) = 0 if a landmark point > of other classes. The numeric value 
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of 	($|�) at every data point can be solved as a boundary value problem. 
In our implementation, we used 10-nearest neighbors to construct such a 
data network. 

 

2.2.2 Processing experiments with multiple replicates 
A common experimental design with mass cytometry data is to measure 

multiple biological examples of a particular type (e.g., organism, tissue, 

treatment condition) in one experiment. To classify data from these 
replicate samples on a common basis, we computed a common set of 

landmark points using pooled data of all replications and then classify 

each replication independently with the same landmark points. Cell 
frequencies were then estimated by counting the classification results. 

 

2.3 Study design and benchmarking 

2.3.1 Validation datasets 
We used three public benchmark datasets. BMMC dataset is a mass 
cytometry dataset collected from healthy human bone marrow (Bendall 

et al., 2011). While 34 parameters were originally measured, the publi-

cally available dataset reduced to only 13 markers, and the resulting 
dataset included 24 populations gated based on these markers (Levine et 

al., 2015). AML dataset is also collected from healthy human bone mar-

row (Levine et al., 2015), and consists of 32 markers and 14 manually 
gated classes. PANORAMA dataset is a recently published dataset that 

provides replicative measurements of mass cytometry data from mice, 

where 24 cellular populations were gated based on 38 surface markers 
(Samusik et al., 2016). Three experts independently gated the cellular 

populations in the PANORAMA dataset and only the consensus part of 

the gating was retained. All event measurements were transformed by 

sinhCD(($ − 1)/5)	before further processing (Samusik et al., 2016). 
 
Cell type-marker tables were generated according to previous studies 

(Levine et al., 2015; Bendall et al., 2011; Samusik et al., 2016). The cell 

type–marker tables of the BMMC and AML dataset were generated 
based on their gating hierarchy provided on Cytobank (Supplementary 

table 1 and 2). In BMMC dataset, erythroblast, megakaryocyte platelet 

and myelocyte were merged as an unknown population since negative 
markers exclusively define these cells. For the PANORAMA dataset, the 

cell type-marker table was generated based on the divisive marker tree 
with minor changes (Samusik et al., 2016) (Supplementary table 3). 

We excluded HSC cells and pro B cells as unknown types since their 

defining markers cannot be determined from the reported divisive mark-
er tree.  

 

2.3.2 Baseline methods 
We implemented 1) score-based classification; and 2) phenograph clus-
tering (Levine et al., 2015) for performance benchmarking.  The score-

based classification assigns event �� to the class �∗ that maximizes the 
score, i.e.,  

�∗ = #GH�#$�(��, �), 
where  is the designed score function. For the phenograph clustering, 
data was first clustered by community detection and then all events with-

in a cluster were assigned to a manually gated cell type of highest fre-
quency in this cluster. This method was implemented as a counterpart of 

estimating population frequencies by unsupervised clustering. 

 

2.3.3 Evaluation metrics 
We applied three metrics to evaluate the performance on estimating 

cellular population frequencies. Given two normalized histograms ℎD and 
ℎJ, generated by counting the number of each cellular category classified 
either manually or automatically, the maximum error is computed by 

taking maximum of absolute errors on all components. To be precise, the 

maximum error is defined by 

K(ℎD, ℎJ) = max� |ℎD,� − ℎJ,�|,	
where ℎD,� and ℎJ,� are i-th elements of histograms ℎD and ℎJ, respective-
ly. The Canberra distance is defined by  

K(ℎD, ℎJ) =0�ℎD,� − ℎJ,�� �ℎD,� + ℎJ,��.O
�

 

This distance is chosen to estimate the capability of capturing rare popu-
lations since it gives higher penalty on the low-frequency populations. 

Lastly, the intersection distance, defined by K(ℎD, ℎJ) = 1 −
�7��min�ℎD,�, 	ℎJ,�� , 	
measures the difference between the common area underlying two histo-

grams and 1, which is the largest possible common area. The intersection 

distance reflects the accumulative errors in all populations. 
 

The accuracy of classifying single-cell events is measured by the F1-

score, which reflects the harmonic mean of precision (purity) and recall 
(yield), 

P� = 2 ×
	�� × Q��
	�� +	Q��, 

	�� =
R��
∑ CTUU

, Q�� =
R��
∑ CUVU

, 
where R�� is the number of events classified as population i that belongs 
to the manually gated population j.  

 

2.3.4 Confidence estimation 
For validation on AML and BMMC datasets, the confidence level was 

estimated using 5-fold cross validation while keeping the percentage of 
samples for each class unchanged. For the PANORAMA dataset, confi-

dence level was estimated as the standard deviation over samples. 

 

2.3.5 Measuring tightness of clusters 
We used silhouette coefficient to measure the tightness of a given cluster 

(Rousseeuw, 1987). Silhouette coefficient measures how similar a datum 

is to its own cluster compared to the other clusters. For the i-th datum, 
silhouette coefficient of this datum is defined as  

�� =
+� − #�

max	(#�, +�), 
where #�  is the average Euclidean distance from this datum to other 
members of the same cluster, and +� is the lowest average distance from 
this datum to members of other clusters. The silhouette coefficient rang-

es from -1 to 1 while a negative silhouette coefficient indicates a datum 

is closer to other clusters than its own cluster. 

3 Results 

3.1 ACDC helps visualization of mass cytometry data 
To test whether the detected landmark points represent the corresponding 
cellular populations, we first applied ACDC to the AML and BMMC 

datasets. In the AML dataset, ACDC identified every population high-

lighted in the study and showed virtually no difference with manual 
gating (Figure 1B). The one exception was a population of 

CD34+CD38+CD123+ HSPCs that showed a lower average intensity of 

CD123 in ACDC than with manually gating. To examine how landmark 
points depicted cellular populations, we used tSNE (Van der Maaten and 

Hinton, 2008) to map cellular measurements sampled from the manually 
gated populations onto a two-dimensional space and displayed the de-

tected landmark points in their respective coordinates (Figure 1C). The 

tSNE projection also supports the observation that landmark points de-
tected by ACDC fall within their corresponding cluster of cells. We 

found similar results in the BMMC dataset (Supplementary Figure 2). 

These results confirm that landmark points can locate cellular popula-
tions as accurate as manual gating. 

 

3.2 ACDC classifies canonical cell populations as accurate as 

human experts 

Although landmark points aid the exploratory analysis of mass cytome-

try data, the focus of this study was to evaluate whether landmark points 
classify events accurately at single-cell resolution. For comparison, we 

implemented two alternative classification methods: 1) a score-based 
classification that assigns an event to the class of the highest score and 2) 

phenograph (Levine et al., 2015) clustering combined with manual gat-

ing to annotate each cluster. Overall, ACDC achieved comparable accu-
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racy (92.9 ± 0.5% for BMMC and 98.3 ± 0.04% for AML) on classifying 

single-cell events with phenograph clustering (93.6 ± 0.7% for BMMC 
and 96.5 ± 0.7% for AML) and significantly improved the score-based 

classification method (78.1 ± 0.03% for BMMC and 68.4 ± 0.1% for 

AML). We also analyzed the classification performance for each cell 
type (Figure 2A and 2E). In the AML dataset, ACDC achieved a median 

F1-score of 0.93, compared with 0.84 for the score-based classification 

and 0.83 for the phenograph clustering. We observed a lower perfor-
mance of ACDC in the BMMC dataset (median F1-score of 0.60, com-

pared with 0.63 for the score-based classification, and 0.55 for the phe-

nograph clustering) due to the difficulty in detecting rare populations 
with frequencies less than 0.5%, such as GMP, HSC, MEP, and MPP. 

However, low silhouette coefficients suggest that these rare populations 
may not form well-defined clusters (Figure 2B and 2F and Supplemen-

tary Figure 3). Both the score-based and phenograph clustering methods 

also failed to identify these rare populations due to a lack of representa-

tive data for these cell types. 

 

3.3 ACDC estimates frequencies of canonical cell populations 

as accurate as human experts 
We next addressed the practical issue of estimating the frequency of a 

cell population. When applied to the AML and BMMC datasets, ACDC 

and the phenograph clustering gave estimates comparable to the manual-
ly gated ones while the score-based classification method overestimated 

the frequency of the unknown population (Figure 2C and Figure 2G). 

To quantify discrepancies between the estimated and manually gated 
frequencies, we examined three common metrics: maximum error, Can-

berra distance, and intersection distance that measures maximum devia-

tions, capability of capturing rare populations and accumulative errors in 
all populations, respectively. In general, both ACDC and the phenograph 

clustering estimated the population frequency up to 2% maximum error 

of manual gating reports and 2-5% error accumulatively on these two 
datasets (Figure 2D and Figure 2H). However, ACDC showed a lower 

Canberra distance to manual gating, highlighting lower discrepancy for 

rare populations. 

3.4 ACDC captures sample variations in population frequen-

cies 
In addition to evaluating the classification accuracy using data collected 
from one set of samples, we wondered if ACDC captured variations 

accurately over biological replicates in the PANORAMA dataset (Figure 

3A). We computed correlations between estimated and manually gated 
frequencies per cell type (Figure 3B). ACDC achieved an average per-

cell type correlation of 0.79, compared to the correlation of 0.71 for the 

score-based classification and 0.38 for phenograph clustering. Regarding 
classifying single-cell events, ACDC achieved a median F1-score of 0.88 

(Figure 3C) compared to 0.79 obtained in the original study (Samusik et 

al., 2016), though two cell types were omitted due to the lack of defining 
markers when curating the input table for ACDC (see Methods for full 

details). These results confirm that ACDC more accurately captures 

sample variations reflected in the manually gated results. 

 

3.5 ACDC discovers ambiguous populations from mass cy-

tometry data  
One challenge for supervised learning approaches is the limited ability to 

discover categories not present in the training data. Here we demonstrate 
that ACDC provides insight on clusters of cells that do not fit into any of 

the pre-defined cell types. Specifically, 24 clusters of unknown cell types 

detected from the PANORAMA dataset (Supplementary Figure 4). We 
found that one of the unknown clusters showed marker patterns similar 

to both IgD+IgM+ B-cells and CD8+ T cells (Figure 4A). This profile 

suggests this unknown cluster represents some form of lymphoid cells 
sharing characteristics of B cells and CD8 T cells.  We also found a 

cluster of unknown cell types that shared features of IgD+IgM+ B cells 

and CD4+ T cells, and cannot be easily categorized into conventional 
types (Figure 4B). Though we cannot exclude the possibility these 

events are doublets that slipped though the pre-gating quality control 

carried out in (Samusik et al., 2016) (Supplementary Figure 5), these 
results demonstrated that ACDC can highlight ambiguous events that 

escaped the automated classification for further investigation. However, 

resolving the biological identity of these events may require utilization of 

collaborative evidence.  
 

3.6 Robustness and computational complexity 

We evaluated whether ACDC is robust to changes in the parameter tun-
ing. ACDC uses one parameter k to construct nearest neighbor networks 

for semi-supervised classification. Table 1 shows the classification accu-

racy evaluated on the BMMC and AML benchmark datasets when set-
ting k to 10, 20, and 30. The results are not sensitive to the parameter k 

over a 3-fold range. 

 
We also examined the computational complexity of ACDC. The most 

expensive computational step in ACDC is the semi-supervised classifica-

tion, which involves constructing and inverting a large matrix. In our 
current implementation, ACDC takes ~250 and ~900 seconds to process 

BMMC and AML benchmarks (Table 1). This computation was done on 

a machine with an Intel® Core™ i7-6700K Processor 3.40GHz and 
16GB RAM. By comparison, it takes ~125 and ~550 seconds to cluster 

the BMMC and AML datasets using Phenograph on the same machine. 
 

Table 1. Computational performance of ACDC. 
 Accuracy (%) time (s) events 

k-nn 10 20 30 10 20 30  

BMMC 92.02 92.24 92.49 245 309 376 81747 

AML 98.36 98.30 98.25 884 992 1077 103184 

 

4 Conclusion 

Here we have introduced a new method called ACDC that combines 
profile matching and semi-supervised learning to automate the analysis 

and interpretation of mass cytometry data. ACDC takes advantage of 

biological knowledge to guide learning algorithms and creates a new 
framework for interpreting data from high-dimensional cytometry. By 

using biological knowledge as an input for the analysis, we turned the 

unsupervised problem of data interpretation into a semi-supervised prob-
lem of network propagation. Our results suggest ACDC reliably classi-

fies single-cell events and aids discovery of novel cell types. 

 
One limitation of ACDC is that each marker label is binary (present or 

absent). In practice, cell populations of interests are defined by interme-

diate marker (Levine et al., 2015; Rosenblum et al., 2016; Ohradanova-
Repic et al., 2016; Guilliams et al., 2014). One possibility is to extend 

the Gaussian mixture model and consider multiple states (Cron et al., 

2013; Chan et al., 2008), and we anticipate this development in a future 
study. 

 

Given the active development of many algorithms to facilitate the pro-
cessing and analysis of high-throughput cytometry data, recent efforts 

have also been focused on developing reproducible pipelines and frame-

works (Aghaeepour et al., 2016, 2013; Finak et al., 2014). The introduc-
tion of a study-specific table with markers and cell labels offers a new 

direction toward automatic and reproducible analysis of mass cytometry 

data. With this easy-to-customize design, the annotation step feeds into 
cytometry data analysis upfront. This feature allows the cellular determi-

nations to be reproduced or modified easily with a given cell type–

marker table. Additionally, flagging ambiguous events help sift through 
the massive data to guide researchers for follow up on areas of quality 

control and process improvement, as well as the discovery of biological-

ly relevant cell populations.  
 

Currently, our design requires a table specified by the analyst. However, 

there’s no limit to what information goes into this table. Thus, it’s possi-
ble to infer a comprehensive table automatically from the complete bio-

medical literature mining (Shen-Orr et al., 2009; Courtot et al., 2015) or 

through a targeted query of an immunological database (Courtot et al., 
2015). The community has long recognized the importance of reliable 

immunophenotyping analysis in flow cytometry (Aghaeepour et al., 
2013; Finak et al., 2016). Additional efforts to integrate existing tools 

into shared computational pipelines for better CyTOF processing and 
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cell type enumeration are needed. With the removal of the manual pro-
cessing steps that currently limit large-scale CyTOF analysis, we envi-

sion ACDC as a step toward a new paradigm of reproducible, systematic, 
and objective immunophenotyping that fully embraces high-dimensional 

datasets for discovery and translation to actionable insights. 
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Fig. 1. ACDC algorithm design and validation. (A) Schematic diagram showing the work flow of ACDC. (B) Heat maps showing 

the average marker intensity of landmark points and manually gated populations from the AML dataset. (C) tSNE visual-

ization of landmark points (large circles) and manually gated populations (dots).  

 

 

Fig. 2. Validation on AML and BMMC datasets. (A, E) Classification accuracy of ACDC (yellow bars), score-based classification 

(purple bars), and phenograph clustering (gray bars) evaluated by F1-score. (B, F) Silhouette coefficients of manually gat-

ed populations show cluster tightness. (C, G) Comparison of population frequencies estimated by the 3 methods versus 

manual gating (green bars). (D, H) Errors in estimating population frequencies. Error bars reflect the standard deviations 

of the accuracy estimates from the cross-validation trials described in 2.3.4 
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Fig. 3. Validation on PANORAMA dataset. (A) Frequencies of cellular populations estimated by manual gating (green bars), ACDC 

(yellow bars), scored-based classification (purple bars), and phenograph clustering (gray bars). All events excluded by 

manual gating were labeled “unknown.” (B) Per-cell type Pearson correlations over 10 replications. (C) Average F1-scores 

over 10 replications. Error bars represent standard deviations.  

 
 

 

Fig. 4. Illustration of selected unknown clusters. (A) Two-dimensional heatmap shows the profile of an 

unknown cluster sharing features of CD8+ T cells, IgD+IgM+ B cells, and gamma-delta T 

cells (rows shown below). Colors reflect the marker intensity. (B) Heatmap indicates the pro-

file of an unknown cluster sharing features of CD4+ T cells and IgD+IgM+ B cells (rows 

shown below). The top-3 similar canonical populations are shown right below the unknown 

cluster. 

 




