
IDENTIFICATION OF DISCRIMINATING BIOMARKERS FOR
HUMAN DISEASE USING INTEGRATIVE NETWORK BIOLOGY

JOEL T. DUDLEY and ATUL J. BUTTE
Stanford Center for Biomedical Informatics Research, Departments of Medicine and Pediatrics,
Stanford University School of Medicine, Stanford, CA 94305-5479, USA

Abstract
There is a strong clinical imperative to identify discerning molecular biomarkers of disease to
inform diagnosis, prognosis, and treatment. Ideally, such biomarkers would be drawn from
peripheral sources non-invasively to reduce costs and lower potential for complication. Advances
in high-throughput genomics and proteomics have vastly increased the space of prospective
molecular biomarkers. Consequently, the search for molecular biomarkers of interest often entails
genome- or proteome-wide discovery for candidate biomarkers. Here we present a novel
framework for the identification of disease-specific protein biomarkers through the integration of
biofluid proteomes and inter-disease genomic relationships using a network paradigm. We created
a blood plasma biomarker network by linking genomic profiles from 136 diseases to 1,028
detectable blood plasma proteins. We created a urine biomarker network by linking genomic
profiles from 127 diseases to 577 proteins detectable in urine. We find that, in both networks, the
majority (> 80%) of putative protein biomarkers are linked to multiple disease conditions. Thus,
putatively disease-specific protein biomarkers are found in only a small subset of the biofluids
proteomes. These findings illustrate the importance of the context of inter-disease molecular
networks in the focused discovery of molecular biomarkers for disease. The proposed framework
is amenable to integration with complimentary network models of biology, which could further
constrain the biomarker candidate space, and work to paint a larger picture for the role of inter-
disease genomic relationships across varying physiological scales.

1. Introduction
Perhaps one of the most compelling prospects of translational genomics is the potential for
the discovery of novel molecular biomarkers of disease that offer early detection of
pathogenesis, inform prognosis, guide therapy, and monitor disease progression. Despite
expectations, the elucidation of accurate and discriminating disease biomarkers has proved
challenging1, and the widespread adoption of genomics-based biomarkers in the clinical
management of disease remains to be realized2. There are many factors confounding the
discovery and development of effective clinical biomarkers, including genetic variation
between and among individuals and populations3, 4, deficiencies in biomolecule capture and
quantification technologies5, transient shifts in proteome composition due to acute-phase
reactants and environmental stress6-8, and logistical constraints related to associated costs
and clinical acceptance9, 10. Such confounding factors can contribute to appreciable clinical
heterogeneity for a particular disease with regards to diagnosis, treatment, and outcome.

Despite the relatively limited impact of genomics on the development of clinical biomarkers
to date, there has been notable success in applying genomics techniques to better clarify and
characterize the clinical heterogeneity observed for many complex diseases. In particular,
high-throughput gene-expression profiling using microarrays has proven successful as a
means by which genome-scale events can be linked to clinical metrics. Ramaswamy et al.
demonstrated that gene expression signatures could accurately differentiate adenocarcinoma

NIH Public Access
Author Manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2009 September 22.

Published in final edited form as:
Pac Symp Biocomput. 2009 ; : 27–38.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



subtypes11. Chen et al. used microarray profiling of lung cancer tissues to derive a
prognostic five-gene expression signature associated with relapse and survival. Potti et al.
derived a set of gene expression signatures that were successful in predicting response to
chemotherapeutic agents12. Although significant, the impact of such findings remains far
removed from the clinic, as they often require undesirably invasive procurement of patient
tissues, improved handling of unstable molecules (e.g. RNA), and improved consistency of
measurements. Such factors have consequently impeded the customary use of microarrays in
most clinical settings.

The desire for minimally invasive biomarker strategies has put a focus on established
clinical biofluids, such as blood and urine, as sources of putative molecular biomarkers.
Both blood and urine are easily and inexpensively obtained from patients as a conventional
facet of clinical care, therefore biomarker strategies leveraging these fluids are particularly
amenable to current clinical protocol13, 14. The advent of several blood plasma and urine
proteome projects, with aims to identify the vast body of gene products comprising these
biofluids, has generated new opportunities for genomics-based approaches to the elucidation
of clinical molecular biomarkers15, 16. Microarray analyses of blood and urine have
identified expression signatures symptomatic of diseases such as rheumatoid arthritis17,
Alzheimer disease18, Chronic Fatigue Syndrome19, Huntington’s disease20, and glial brain
tumors21.

Disease conditions are most often signified by the dysregulation of complex biological
pathways involving multiple, interacting gene products. Thus integrative approaches linking
gene expression activity with proteomics and physiopathology are needed to identify highly
discerning subsets of molecular biomarkers from the vast combinatorial space of candidates.
One such approach is to frame the space of biomarker candidates within the context of inter-
disease relationships. The current approach to biomarker discovery is based on the implicit
assumption that the heterogeneity of clinical disease classifications is subsumed by the
underlying molecular pathophysiology of the disease condition. However, recent studies
have shed light on widespread genomic and genetic correspondence between diseases
previously thought to be dissimilar based on anatomy and manifest symptoms22-24. In fact,
the similarity of responses across diseases and tissues raises concerns about the specificity of
putative biomarkers derived under the consideration of a single disease condition.

Here we propose an integrative, network-based model for biomarker prioritization that
identifies putatively high-specificity biomarkers in blood and urine proteomes using inter-
disease relationships derived from gene expression profiles across hundreds of diseases and
nearly ten thousand microarrays. We find that a majority of detectable protein biomarkers
(>80%) exhibit non-discerning disease connectivity in the biomarker network, potentially
impacting their clinical utility for a single disease. Our findings highlight the importance of
integrating the context of broad inter-disease relationship profiling into future molecular
biomarker discovery and prioritization efforts.

2. Methods
2.1. Discovery and annotation of disease experiments

Microarray experiments characterizing human disease conditions were automatically
identified using a previously developed method25. In brief, microarrays were obtained from
the NCBI Gene Expression Omnibus (GEO)26. We have previously shown that the
experimental context for GEO Series (GSE), or collections of microarrays, can be obtained
using MeSH terms from PUBMED records associated with GEO experiments. MeSH terms
derived in this manner were evaluated for disease concepts using the Unified Medical
Language System (UMLS)27. Each GSE determined to be relevant to a human disease was
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subject to automated annotation of the disease condition, the tissue or biological substance
from which the samples were derived, and whether or not the experiment measured a normal
control state complimentary to the annotated disease state by means of a previously
described method28. We only used microarray experiments in which disease and normal
tissues were measured in the same experiment. The disease and tissue annotations were
manually reviewed in a post-processing step to ensure accuracy. This process yielded 383
disease-related experiments (238 unique diseases) totaling 8,435 microarrays.

2.2. Microarray data preparation and analysis
For each microarray platform associated with the annotated disease experiments we updated
the mappings between the platform-specific probe identifiers and the Entrez GeneID
identifiers in an automated manner using the AILUN system29. Microarrays were only
compared to other microarrays within their original experiments (or GSE). For each disease
experiment we derived a set of significantly differentially expressed genes using SAMR30.
SAMR was configured to estimate the False Discovery Rate (FDR) using 1,000 rounds of
measurement permutations. Genes were considered to be significantly differentially
expressed if the estimated fold-change was > 1.5 and the estimated FDR was < 5%.

2.3. Construction and analysis of the proteome biomarker networks
A database of human blood plasma proteomes was constructed using data from the HUPO
Plasma Proteome Project15 and a non-redundant list from the Plasma Proteome Institute31.
Only the 3020 proteins from the high-confidence set of identified peptides in the HUPO PPP
dataset were included in the analysis. Urine proteome data was obtained from the MAPU
Proteome database32 and the Urinary Exosome database33. The original data sets were
parsed into a MySQL database and the International Protein Index (IPI) identifiers were
mapped to Entrez GeneID identifiers using AILUN29. Disease-associated genes from
microarray studies were associated with protein biomarkers using Entrez GeneID as the
associative identifier. Networks were constructed such that diseases and genes (proteins)
were nodes, and edges between gene and disease nodes were formed when a gene was found
to be significantly differentially expressed in the disease state. The networks rendering and
analysis was performed using the yED graph editor (http://www.yworks.com).

2.4. Functional annotation enrichment analysis
Functional annotation enrichment for disease-associated protein biomarkers was conducted
using the DAVID system34. For each biomarker network, genes linked to at least one
disease were considered to be the “gene list” and the entire list of gene identifiers associated
with the respective proteomes were used as the background population. P-values were
adjusted using Benjamini-Hochberg correction35.

3. Results
In linking proteome biomarkers with disease, we find that 1,028 (38.5%) plasma and 577
(39.9%) urine proteins were found to be significantly differentially expressed in one or more
of the 238 distinct disease states represented in the microarray data. Of those, 846 (82.2%)
plasma and 490 (84.9%) urine proteins are significantly differentially expressed in more
than one disease state. Thus, less than 20% of putative proteome disease markers exhibit
specificity for a single disease.

Among the putative biomarker proteins associated with disease we identified a number of
enriched gene annotation terms (Table 2). Disease-associated plasma biomarker proteins
were enriched for plasma membrane proteins, and proteins involved in sugar and
carbohydrate metabolism. Disease-associated urine biomarker proteins were enriched for
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extracellular proteins, and proteins involved in amine metabolism and biotic stimulus
response.

We found that a majority of diseases could not be linked to a disease-specific protein
biomarker in either the blood plasma or urine proteomes. Among the distinct disease
conditions represented in the microarray data, 136 (57.1%) were linked to plasma proteins,
while 127 (53.4%) were mapped to urine proteins. Of these, 65.4% and 72.4% link
exclusively to biomarkers shared by other diseases in plasma and urine respectively. A
selection of disease conditions associated with multiple disease-specific biomarker proteins
are listed in Table 3.

The mean disease linkage degree for a protein biomarker node was 5.09 in the plasma
network and 5.06 in the urine network. The mean biomarker linkage degree for a disease
node was 36.19 in the plasma network and 22.57 in the urine network. The distribution of
disease connectivity across biomarker nodes was found to follow an exponential model in
both the blood (R2 = 0.94) and urine (R2 = 0.93) networks, suggesting a scale-variance in
attachment (Figure 1). The distribution of biomarker connectivity across disease nodes was
found to follow a weak power-law model in both the blood plasma (R2 = 0.59) and urine (R2

= 0.53) biomarker networks, suggesting a scale-free property. This suggests that diseases
with many biomarkers preferentially gain more biomarkers. The equivalent graph of the
connectivity of the biomarkers matches an exponential curve. The shape of the curve
actually splits into two parts. At low connectivity, biomarkers gain connections to diseases
randomly as more diseases are added. At higher connectivity, biomarkers then gain
connections to diseases preferentially if they are already connected. The two segments to the
log-log plots of biomarker node degree distributions in Figure 1 thus suggest there are two
separate populations of biomarkers.

4. Discussion
In this study we propose an integrative network model for biomarker prioritization using
inter-disease relationships derived from microarray studies, and putative protein biomarkers
from large-scale biofluids proteome studies. Unlike traditional biomarker prioritization
approaches, our approach first considers all possible (i.e. measureable) protein biomarkers in
a biofluid proteome and places them within the context of inter-disease relationships across
the broad spectrum of human disease to identify putative protein biomarkers that are likely
to be highly discerning for a disease of interest.

Our approach finds validation in the finding that a majority proportion (> 80%) of
measurable proteins in both the blood plasma and urine proteomes are non-specific for any
single disease condition. Interestingly, disease-specific biomarkers appear to be associated
preferentially with a subset of diseases. Given the vast resources required for both
identifying and biologically validating putative molecular biomarkers, it might be prudent to
focus biomarker discovery efforts on the diseases enriched for disease-specific biomarker
associations. Such enriched associations could imply that a novel and discriminating
pathway is involved in the pathogenesis of the disease, and could lead to the identification of
highly discriminating upstream biomarker candidates.

Although many of the discriminating disease-biomarker associations predicted by our
approach remain to be biologically and clinically validated, there is, in several cases, a
compelling degree of biological continuity between the predicted disease-specific biomarker
and the understood molecular phenomena underlying the disease. One such example is our
prediction that Collectin Sub-family Member 10 (COLEC10) as a putative disease-specific
biomarker for Crohn’s disease. Crohn’s disease is a chronic, debilitating inflammatory
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bowel disorder that can affect any portion of the digestive tract36. Recent genome-wide
association studies and other investigations into the pathogenesis of Crohn’s disease have
revealed a number of susceptibility genes37, 38 and the major role of the body’s innate
immune response against enteric microbiota39, 40. Collectins have been implicated as
significant regulators of the innate immune system, particularly with regards to host defense
response to microorganisms41. Collectins are known to induce pro-inflammatory cytokines
and participate in activation of the compliment system via the lectin pathway during the
microorganism defense reponse42. Therefore COLEC10 could serve as a novel biomarker
that is sensitive to the episodic manifestations of Crohn’s disease to inform ongoing disease
management, whereas current biomarkers for the disease are primarily diagnostic43.

Another interesting finding is the identification of GDP dissociation inhibitor 1 (GDI1) as a
disease-specific biomarker for Hypercholesterolemia. GDI1 is a known regulator of the
GDP/GTP exchange reactions of Rab proteins and a participant in the vesicle mediated
cellular transport44. GDI and Rab are also known to participate in the cellular transport of
lipids, and GDI/Rab dysregulation has been observed in the presence of cholesterol
accumulation45.

We recognize several caveats in our approach. Foremost, our approach makes the naïve
assumption that if a gene is significantly differentially expressed in a disease condition that
this differential will be reflected in either blood plasma or urine regardless of the anatomical
locus of the disease site. While quantifications of mRNA expression can be far removed
from the modulation of protein fragments in biofluids, there is reason to believe that such an
assumption can hold true in a sufficient number of cases. Interestingly, notable proportions
of the proteins identified by blood plasma and urine proteome projects are annotated with
Gene Ontology terms signifying intracellular localization, including: intracellular part
(55.4%), intracellular organelle part (20.3%), cytoskeleton (9.6%), and nuclear part (6.4%).
Such phenomenon may be accounted for by sufficient secretion of intracellular proteins
inside small-membrane vesicles known as exosomes by various tissue types46-50.
Furthermore, cells undergoing destruction as a consequence of pathogenesis are likely to
emanate intracellular matter into biofluids. We also recognize that the specificity of a
protein biomarker in our networks is subject to the available disease-condition data
available. The addition of novel disease conditions into future versions of the biomarker
network could even further reduce the proportions of disease-specific protein biomarkers.
Our study is also limited by the available number and quality of microarray datasets across
diseases

The framework proposed in this study is not intended to serve as an unequivocal means for
biomarker elucidation. Rather we suggest that the integration of our approach with other
forms of biomarker network biology is likely to lead to even more sophisticated approaches
to informatics-based biomarker discovery. Alterovitz et al. proposed an information
theoretic framework for biomarker discovery that identified high-quality peripheral
biomarker candidates by identifying significant tissue-biofluid channels across a wide range
of tissues and biofluids proteomes51. Our approach could be used in combination with their
biofluids channel approach to find optimal intersections between disease-specificity space
and biofluid-tissue interaction space to even further refine the scope of putative biomarker
proteins for a particular disease condition.

5. Conclusion
The discovery of discerning molecular biomarkers for a disease state of interest is
encumbered by the vast combinatorial space of prospective candidate markers. Our work
provides a novel framework for reducing the space of candidate markers using a network of
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genome-scale disease conditions and biofluids proteomes. While a more traditional
biomarker discovery endeavor might start with the disease condition of interest to identify
biomarker candidates in a “bottom-up” approach, we offer a “top-down” approach that
begins with the broad space of human disease and full compliments of biofluid proteomes to
quickly discern candidate protein biomarkers discriminately associated with the a disease
condition. This work establishes the importance of genome-wide, inter-disease relationships
in biomarkers discovery and paves the way for novel integrative methods that incorporate
inter-disease network models to further refine biomarker discovery.
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Figure 1.
Independent log-log plots of node degree distributions for biomarker and disease nodes.
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Figure 2.
A rendering of the plasma biomarker network is shown. Disease-specific biomarkers (green)
are found extending from diseases (blue) at the periphery of the network.
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Table 1

A subset of indiscriminate, highly-connected biomarker nodes and their disease targets

Biomarker Diseases

Plasma

AZGP1

Cardiac hypertrophy, Spinal cord injury, Idiopathic cardiomyopathy, Idiopathic thrombocytopenic purpura, E. coli infection of
the CNS, Hypercholesterolemia, Clear cell carcinoma of kidney, Hypertrophy, Glioblastoma, Adenoma of small intestine,
Thrombocytopenia, Carcinoma in situ of small intestine, AML, Huntington’s disease, Porcine nephropathy, Allergic asthma,
Cirrhosis of liver, Adenovirus infection, Squamous cell carcinoma, Duchenne muscular dystrophy

CD46

Malignant neoplasm of prostate, Complex dental cavity, Fracture of bone, MODY, Dermatomyositis, Bacterial infection, Clear
cell carcinoma of kidney, Spinal cord injury, Status epilepticus, Senescence, Fracture of femur, Barrett’s ulcer of esophagus,
Rheumatoid arthritis, Urothelial carcinoma, Astrocytoma, Glioblastoma, Congestive cardiomyopathy, Obesity, Lung transplant
rejection

LAMA2

Breast cancer, Dermatomyositis, Malignant neoplasm of stomach, Acute lung injury, Malignant melanoma, Glioblastoma,
Adenovirus infection, Duchenne muscular dystrophy, Acute promyelocytic leukemia, Senescence, Barrett’s ulcer of esophagus,
AML, Hypercholesterolemia, Hepatic lipidosis, Acute pancreatitis, Idiopathic thrombocytopenic purpura, Porcine nephropathy,
Urothelial carcinoma, AIDS

Urine

AKR1C1

Acute lung injury, Acute arthritis, Essential thrombocythemia, Ulcerative colitis, Lung transplant rejection, Malignant
melanoma, Carcinoma in situ of small intestine, Dehydration, Adenoma of small intestine, Bacterial infection, Glioblastoma,
Oligodendroglioma, Urothelial carcinoma, Progeria syndrome, Atrial fibrillation, Huntington’s disease, SARS, Adenocarcinoma
of lung

PRG4

Multiple benign melanocytic nevi, Urothelial carcinoma, Type 2 diabetes mellitus, Actinic keratosis, Adenocarcinoma of lung,
Thrombocytopenia, Acute myeloid leukemia, Huntington’s disease, Cardiomyopathy, Ventilator-associated lung injury, Macular
degeneration, Congestive cardiomyopathy, Polycystic ovary syndrome, Dermatomyositis, Adenovirus infection, Acute
pancreatitis

AQP2G4
Clear cell carcinoma of kidney, Dermatomyositis, Breast cancer, Duchenne muscular dystrophy, Hepatocellular carcinoma,
Bacterial infection, Barrett’s ulcer of esophagus, Helicobacter pylori GI infection, Macular degeneration, MODY, Urothelial
carcinoma, AML, Crohn’s disease, Ulcerative colitis, Epithelial proliferation
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Table 2

Annotation enrichment for disease-associated biomarkers

GO Term P-value

Plasma

(GO:0005975) carbohydrate metabolic process 3.1E-5

(GO:0019318) hexose metabolic process 1.1E-4

(GO:0006066) alcohol metabolic process 4.6E-4

(GO:0044459) plasma membrane part 5.3E-4

Urine

(GO:0009308) amine metabolic process 7.7E-3

(GO:0044421) extracellular region part 1.4E-2

(GO:0050896) response to stimulus 1.8E-2
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Table 3

A subset of diseases associated with multiple disease-specific protein biomarkers

Disease Disease-specific protein biomarkers

Plasma

Idiopathic cardiomyopathy MACF1, SF3B2, RFX5, TLN1, FSHR, PCCA, PGK2, NEK1, RGS3, RGN, CYP3A43

Thrombocytopenia CYLC2, PIGK, AASS, PANX2, DSPP, XPC, TBL1X, TCERG1

Malignant melanoma PDE3A, CALR, PDCD6IP, CHAC, KIAA0586

AIDS PAPPA, TRADD, KIAA0649, APRIN, MAP3K5

Huntington’s disease MAML1, PLGL, RNF10, KIAA0913, OAS1

Urine

Idiopathic cardiomyopathy DEFA3, ALDH1L1, CD177, TLN1, SLURP1, BPI, APOH, C8B

Glioblastoma WISP2, PRDX3, TIMP2, ACO1

Breast cancer ENPP4, PFKP, THBD, IGFALS

Acute promyelocytic leukemia CSPG3, LGALS7, HSPA5

Adenovirus infection VGF, AGA, UMOD
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